Understanding amyloid aggregation by statistical analysis of atomic force microscopy images.
نویسندگان
چکیده
The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured beta-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.
منابع مشابه
Preparation and study of the inhibitory effect of nano-niosomes containing essential oil from artemisia absinthium on amyloid fibril formation
Objective(s): Artemisia absinthium is an aromatic, perennial small shrub that shows multiple medical benefits, including anticancerous, neuroprotective, antifungal, hepatoprotective, antidepressant and antioxidant properties. One of the effective approaches to treat Alzheimer’s disease is targeting amyloid aggregation by antiamyloid drugs. In the current research study, an excellent grouping of...
متن کاملStudy of Nanofibrils Formation of Fibroin Protein in Specific Thermal and Acidity Conditions
Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important.Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein)...
متن کاملDirect electrochemical and AFM detection of amyloid-β peptide aggregation on basal plane HOPG.
Amyloidogenesis is associated with more than 30 human diseases, including Alzheimer's which is related to aggregation of β-amyloid peptide (Aβ). Here, consecutive stages of Aβ42 aggregation and amyloid fibril formation were followed electrochemically via oxidation of tyrosines in Aβ42 adsorbed on the basal plane graphite electrode and directly correlated with Aβ42 morphological changes observed...
متن کاملUltrasonic force microscopy for nanomechanical characterization of early and late-stage amyloid-β peptide aggregation
The aggregation of amyloid-β peptides into protein fibres is one of the main neuropathological features of Alzheimer's disease (AD). While imaging of amyloid-β aggregate morphology in vitro is extremely important for understanding AD pathology and in the development of aggregation inhibitors, unfortunately, potentially highly toxic, early aggregates are difficult to observe by current electron ...
متن کاملEarly events in insulin fibrillization studied by time-lapse atomic force microscopy.
The importance of understanding the mechanism of protein aggregation into insoluble amyloid fibrils lies not only in its medical consequences, but also in its more basic properties of self-organization. The discovery that a large number of uncorrelated proteins can form, under proper conditions, structurally similar fibrils has suggested that the underlying mechanism is a general feature of pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2010